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Abstract
In this report, we analyze the accuracy of dense surface modeling within the PhotoModeler Scanner (PMS) soft-

ware package. Using techniques from photogrammetry and computer vision, PhotoModeler Scanner is able to recon-
struct surfaces present in a scene. The quality of the reconstructed surface depends on a) the estimation of the camera
parameters and b) the matching accuracy between corresponding points on the scene photographs. The impact of
both stages is examined in this report. Accuracy studies are conducted using simulated 3-D scenes, as well as using
real-world images of scenes containing benchmark data. The simulated scenes allow testing individual parameters
affecting the accuracy of dense surface model creation. The real world scenes are used to emulate a typical user
scenario and to provide an accuracy analysis under general (non-ideal) conditions. A maximum accuracy of approxi-
mately 1 part in 44,000 is achieved using perfectly known camera parameters and an artificial planar scene. A drop
in accuracy to 1 part in 18,000 is observed when manual intervention (in the form of photogrammetric targets) is
used for camera parameter estimation. The most flexible case of fully automatic camera parameter estimation (with
no special targets) results in an accuracy of 1 part in 10,000. Finally, the accuracy of surfaces generated by PMS is
found to have similar accuracy to a state-of-the-art laser scanner. More specifically, PMS outputs point clouds that
are accurate to ±0.9mm at a 3.5m range.

1 Introduction
The classical problem of surface reconstruction from multiple photographs finds varied applications in domains such
as visual effects engineering (VFX), surveying, forensic sciences and digital preservation of architectural and archaeo-
logical objects. The wide spread availability of high resolution cameras has led to an explosion in various professional
and hobbyist applications. The main scope of this article is to establish the usefulness of PhotoModeler Scanner (PMS)
as a professional photogrammetry tool with defined accuracy bounds. The algorithms used in PhotoModeler Scanner
are based on passive stereo techniques which help in recovering the 3-D structure of a surface. Alternative technolo-
gies include active stereo and time of flight sensors1. Active stereo can result in highly accurate reconstructions of the
scene but they require controlled indoor environments and a higher degree of user intervention. Time of flight sensors
have a high cost and can be difficult to transport and setup. These alternative methods have conventionally delivered
higher accuracy in obtaining surface reconstructions. However, the availability of very high-resolution imaging sen-
sors and the development of sophisticated algorithms from the computer vision community have pushed the accuracy
envelope of passive stereo methods. An important aim of this paper is to re-examine the hierarchy of accuracy claims
between the different alternatives to 3-D surface reconstruction.

2 Methodology
The quality of a 3-D reconstruction depends primarily upon (a) the accuracy of the recovered camera parameters
involved in a photogrammetric project and (b) the accuracy of the matching between corresponding points. The
camera parameters refer to intrinsic parameters (related to the imaging system) and extrinsic parameters (pertaining
to the relative configuration of different viewpoints). In particular, intrinsic parameters of a camera refer mainly to
the focal length of the camera, the location of the principal point and the radial distortion introduced by the lens
(if any). The extrinsic parameters of a camera refer to the pose of the camera in relation to a particular coordinate
system. These involve a translation of the camera center and rotational parameters describing the orientation of
the camera with respect to the reference coordinate frame. The effects of the camera parameters can be isolated
by assuming them to be accurately known. This can be achieved through artificial scenes rendered by a graphics
package in which the camera parameters (both internal and external) are manually defined. Such a technique provides
a tightly controlled environment to evaluate the effect of various factors on the accuracy of the 3-D reconstruction.
Alternatively, if the intrinsic parameters of a camera are not known, they can be estimated to a high degree of accuracy
using a calibration procedure. Similarly, the pose of the camera can also be obtained to a high degree of accuracy by
establishing correspondences between points in multiple images of the scene. In subsequent discussion, we assume
that the intrinsic parameters have been estimated to a high degree of accuracy. We will then use the term “camera

1http://en.wikipedia.org/wiki/Time-of-flight camera
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parameters” to refer exclusively to the extrinsic parameters of the camera. These extrinsic parameters are also referred
to as the orientation or pose of the camera.

We propose a series of experiments gradually relaxing constraints on the known parameters required in a full 3-D
reconstruction of a scene. The different parts of the experiment are broken down graphically in Fig. 1. The left-
hand branch of the methodology diagram in Fig. 1 isolates the effects of the camera parameters from those of the
dense matching stage. The experiments in the left-hand branch expose the accuracy of the matching algorithm while
factoring out the accuracy of the camera parameters. The camera parameters can be factored out by manually setting
them to be known parameters. We use an external graphics rendering package to create an artificial scene with known
camera parameters. By using such an approach, a higher degree of control can be imposed on the structure of the
scene.
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Figure 1: A graphical representation of the experimental methodology followed in this study

The right-hand branch of Fig. 1 shows the different paths that examine the accuracy of a dense surface model
(DSM) as a function of both unknown camera parameters and the dense matching required in a multi-view stereo setup.
In these experiments, PhotoModeler does not assume the camera parameters to be known. A calibration procedure is
run to estimate the intrinsic parameters of the cameras used in the scene. Moreover, a pose estimation procedure is
also used to obtain the extrinsic camera parameters. The pose estimation is reliant on finding corresponding points
between images of the scene. PhotoModeler can estimate the pose by

1. using manually referenced points on corresponding images (requires user intervention in PhotoModeler Scanner),

2. automatically detecting manually placed targets in the scene (requires user intervention while setting up scene),

3. automatically detecting salient features from the scene (fully automatic).

Each of these situations is investigated in Sec. 3. A subtle assumption in various multi-view stereo methods is
the availability of the intrinsic and extrinsic camera parameters. The most general case would be to consider both
the intrinsic and extrinsic parameters of the camera as unknown and to estimate these parameters together with the
3-D reconstruction. However, PhotoModeler takes the middle ground and only requires knowledge of the intrinsic
parameters of the camera. A convenient calibration capability is included within PhotoModeler in which the user
completes a quick, largely automated procedure. This consists of taking photos of a calibration sheet from multiple
viewpoints. PhotoModeler is then able to compute the intrinsic camera parameters like the focal length, principal point
and radial distortion parameters. In the absence of such a calibration procedure, PhotoModeler also allows a user to
use approximate values for the intrinsic parameters (for example, using focal length settings from the EXIF data of a
photograph). These values can then be refined using a field calibration procedure in PhotoModeler.

The orientation of the cameras can be solved in an fully automatic manner by PhotoModeler using its SmartMatch
(SM) feature. The SM capabilities of PhotoModeler include finding unique interest points in images of the scene and
robustly matching them to corresponding points in images from different viewpoints. A more user-controlled approach
can also be taken by placing photogrammetric targets in the scene. These targets can then either be automatically
matched, or referenced manually by hand.

Several factors contribute to the quality of the reconstructed scene. While the algorithms used in the camera
orientation and dense matching stage are obvious factors, we are also interested in other factors which can affect the
quality of the dense surface model. A few such factors are enumerated in Sec. 2.1 and 2.2.
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2.1 External parameters affecting DSM accuracy

This section enumerates several scene, camera and surface related parameters that affect the accuracy of a recon-
structed surface using multi-view stereo techniques.

Base-to-Height Ratio: The base-to-height (B/H) ratio is a term that is primarily used in aerial photogrammetry.
It is defined as the ratio of the separation between a camera pair and their height above the ground plane. The implicit
assumption in computing a B/H ratio is that the camera pair are translated with respect to each other only in one
dimension and that they are located at the same height above the ground. In more general multi-view configurations,
the B/H ratio can be approximated through the use of various heuristics.

Camera Angle: The camera angle is defined as the angle between the look vectors of each camera in a camera
pair. The look vector of a camera is depicted in Fig. 2. It is defined as the unit vector pointing in the direction of the
vector between the camera center and the perspective center of the image plane.

Surface Angle: The camera angle does not consider the surface being modeled. The surface angle is defined
as the angle between the camera-to-surface vectors at a given point on the surface. The camera-to-surface vector is
defined as the vector between the camera center and a point on the surface. In this paper, we generalize the surface by
its centroid and compute surface angle with respect to the centroid of the surface. A surface angle can, however, be
calculated for every point on the surface. This is also shown in Fig. 2.
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Figure 2: A depiction of the camera look vector and the surface angle

Texture: Correlation between neighborhoods of a pixel forms the basis of the dense matching used in PhotoModeler
Scanner. A prerequisite for such correlative matching is the existence of surface texture that is unique enough to dis-
criminate between different pixel neighborhoods. Moreover, the appearance of this texture must remain consistent
between different image viewpoints. For example, specular highlights and lighting changes may change the appear-
ance of the texture. As a result, the type of surface texture plays a vital role in the accuracy of the matching and
subsequent 3-D reconstruction. We examine several common textures in the report and observe their effects in the
accuracy of 3D reconstruction.

2.2 Internal PhotoModeler Parameters

This section describes internal parameters that PhotoModeler Scanner uses in creating a dense surface model.
PhotoModeler Scanner may downsample images of the scene to improve processing time, which effectively decreases
image resolution available to the correlation algorithm. We denote this factor as DSMsampling. If the surface being
modeled is an object with fine details on its surface, a smaller sampling factor should be used (higher resolution).
However, if the object is featureless with flat sides, then a coarse sampling (lower resolution) would be a more prudent
choice.

PhotoModeler Scanner uses window-based correlation to match corresponding pixels over image rows (using the
epi-polar constraint). The size of the square window is obtained from DSMradius and is given by

Window Size = 2×DSMradius +1

The size of the window is a critical factor in the resolution of the depth obtained. A large window size may
lead to overly smoothed depth estimates while too small a window size may lead to noisy depth estimates. A final
parameter worthy of mention is DSMtexture which controls the quality of the reconstructed points. This parameter is
used to control the strictness of the matching based on a user-specified setting. The texture parameter DSMtexture ∈
{1,2, . . . ,10}, where 1 indicates an ideal texture setting of a random surface texture while 10 indicates a worst-case
texture setting of a repeating pattern or a texture-less surface. The net effect of varying DSMtexture is to increase or
decrease the density of the reconstructed point cloud by only allowing points which are stably matched.
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3 Results
This section presents the results of the various accuracy studies performed. In Sec. 3.1, the results of simulations using
artificial 3-D scenes are detailed (assuming perfectly known camera parameters). This assumption of fully known
camera parameters is relaxed in Sec. 3.2 and experiments are carried out to determine the relative accuracy when the
camera pose is jointly estimated with the scene reconstruction. In Sec. 3.3, real images are used with ground truth
obtained from laser scanners to evaluate the surfaces generated by PhotoModeler Scanner .

3.1 Simulation using artificial scenes

The artificial scenes in this report are generated using Autodesk Maya 2012. The images are rendered under the
assumption of ideal imaging conditions using the pinhole camera model. In this section, various internal and external
parameters related to DSM accuracy are examined. The primary error metric used is the root mean square (RMS)
error which is given by,

RMS error =

√
∑

N
i=1 (zi− ztrue)

2

N
, (1)

where N is the total number of points in the point cloud generated from each image pair, zi is the depth of a particular
point in the scene with reference to a global coordinate system and ztrue is the true depth of the point. We also use a
1 part in N accuracy measure which is expressed as a ratio of the error with respect to the size of the surface being
examined. Since photogrammetric techniques are not scale-dependent, a 1 : N measure captures the accuracy for both
microscopic and macroscopic scales. The only inherent limitation is the resolution of the imaging device. We define
the 1 : N term as the accuracy measure and it is given by

Accuracy Measure = Error Measure : Surface Size = 1 : Surface Size×Error Measure−1. (2)

All the artificial scenes referred to in this section consider a plane parallel to the X −Y plane, placed at Z = −2.
A random texture is used as a default surface material. Since PhotoModeler Scanner uses a correlation-based method
in matching image patches, a random texture provides maximum discrimination between image patches. The random
texture is generated as a texture map in which each pixel is sampled from a uniformly distributed random variable over
the range [0,255].

Effect of B/H Ratio: The first parameter we examine is the base-to-height ratio (B/H ratio) briefly explained in
2.1. The configuration of the scene is shown in Fig. 3a. The size of the plane is 8 cm × 8 cm which results in a
diagonal length of 11.31 cm. The diagonal length is considered as the surface size to be used in the calculation of
the accuracy measure defined by Eq. 2. The plane is rotated by 45◦ in the X −Y plane so that three corner points of
the plane are visible in all views. This is necessary to define an approximate surface in the scene to aid in setting the
disparity search range.

B/H Ratio 1 part in N Accuracy (from RMS error)
0.1 1 part in 17,700
0.3 1 part in 30,700
0.5 1 part in 25,300
0.9 1 part in 26,200

Table 1: Trends in accuracy as a function of B/H Ratio

In Fig. 3a, the camera angle is kept constant at 0◦ and the B/H ratio is increased from 0.1 to 1. The RMS
error is plotted versus the B/H ratio in Fig. 3b. It can be observed that the error is high for a very small B/H ratio
of 0.1 and then stabilizes to an equilibrium error between B/H ratios of 0.5 and 1.0. This pattern is observed in
different scenarios using different textures. While it is difficult to draw conclusions from such a graph, the observed
trend agrees with the observation made in [1] which indicates that an ideal B/H ratio for creating a digital elevation
map is between 0.5-1.0. The trend in the RMS error shows oscillatory behavior around the value of 0.0006 which
corresponds to a 1 part in 18,900 accuracy. The 1 part in N accuracy for certain B/H ratios is shown in Table 1.
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(a)

(b)

Figure 3: The artificial scene used to investigate B/H ratio effects is shown in (a) and the trend in RMS error as a
function of B/H ratio is shown in (b)

Effect of Camera and Surface Angle: The second parameter that is considered is the camera angle as defined in
Sec. 2. The configuration of the scene is shown in Fig. 4a. This scene has cameras with a range of look angles, from
fronto-parallel to as high as a 80◦ angle. It is important to note that all the cameras are aimed towards the centroid of
the surface. This implies that the camera angle is the same as the surface angle (at the centroid). The dimensions of
the plane used are 15cm × 13cm which results in a diagonal size of 19.85cm.

In Fig. 4b, the RMS error in the Z-depth is shown as a function of the angle to the surface. We observe that as
the angle gets larger, the error reduces. This behavior is expected in the case of a flat planar surface. However, in the
case of more complex shapes, there could be considerable self and scene occlusion such that these results may not
necessarily hold. As the surface angle increases there is considerable perspective distortion between the two views in a
stereo pair. As a result, the surface texture may look very different when seen from such viewpoints. Such differences
in texture critically impact the correlation-based matching, thus decreasing the accuracy of the reconstructed point
cloud.

The results using the scene in Fig. 4a are misleading because the B/H ratio is not kept constant as the camera
angles are changed. When the B/H ratio is kept constant at 0.5, the change in camera angle causes the plane to
undergo sharp perspective change at higher angles. This perspective change leads to a higher error. The result of a
different experiment in which the camera angles are changed but the B/H ratio is kept constant at 0.5 is shown in Fig. 5.
As expected, the error decreases sharply from a very low angle until 30◦ and then increases again as the perspective
foreshortening effect becomes significant.
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(a)

(b)

Figure 4: The artificial scene used to investigate surface angle effects is shown in (a) and the RMS error in the Z-depth
as a function of the surface angle (in this case, also the camera look angle) shown in (b) . The B/H ratio is kept constant
as the camera angle is changed in (c).

Camera Angle 1 part in N Accuracy (from RMS error)
5◦ 1 part in 8,400
30◦ 1 part in 46,400
35◦ 1 part in 35,600
50◦ 1 part in 12,200

Table 2: Trends in accuracy as a function of camera angle

The results obtained from previous experiments suggest that a base-to-height ratio between 0.5 and 1.0 together
with a camera angle of around 30◦ leads to the greatest accuracy in depth measurements. These results are used in
setting up another artificial scene to test the internal parameters of PhotoModeler Scanner by choosing optimal external
parameters. Consider the scene in Fig. 7a which contains the same plane of Fig. 3a but of dimensions 12 cm × 12
cm. The major difference is that a B/H ratio of 0.6 and a surface angle of 30◦ is chosen to set up the cameras. Using
this scene, we wish to examine the internal parameters like DSMsampling, DSMtexture and DSMradius. Rendered images
from the two camera viewpoints are shown in Fig. 6.
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Figure 5: The B/H ratio is kept constant as the camera angle is changed. .

(a) (b)

Figure 6: The rendered images of a plane with camera (a) C1 at (3,0,8) and (b) C2 at (−3,0,8)

(a) (b)

Figure 7: The artificial scene used to examine internal PM parameters in (a) and the same scene solved in
PhotoModeler in (b)
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Effect of DSMsampling: We first consider varying the DSMsampling factor. The downsampling factor controls the
resolution of the images used in the dense matching. The resolution of the image used is an important factor in
uniquely representing the neighborhood of a certain pixel in the image. The DSMsampling factor is used primarily as a
means to reduce the computational time in creating a dense surface model. As the downsampling factor is increased, a
corresponding loss in high-frequency content will be observed in the image. The high-frequency content of an image
corresponds to edges and sharp features which are prime factors in uniquely determining pixel neighborhoods. As
observed in Fig. 8, the error increases as the downsampling factor is increased. The relationship is almost linear and
is an intuitive result. Thus, for maximum accuracy, a high resolution image is recommended.

Figure 8: The trend in RMS error as a function of downsampling factor DSMsampling.

Effect of DSMradius: The next internal parameter examined is the window size DSMradius. The window refers to
a patch or neighborhood of fixed size around individual pixels in an image. These patches represent a template which
is compared with other patches in the dense matching stage. Intuition suggests that a larger window size would lead
to better matching, hence leading to more accurate 3-D point reconstructions. However, it is important to caution that
this reasoning only holds when the surface is planar and in a fronto-parallel configuration with the viewing camera.
Such a situation is not very likely to exist in real world conditions. A very small window size is able to resolve fine
gradations on the surface but will also include noisy point reconstructions. On the other hand, a large window size
will lead to an overly smooth surface and a loss in the finer structure present on the surface. In terms of accuracy of
estimated depth, we observe that a larger window size leads to more accurate reconstructions for a planar surface as
shown in Fig. 9.

Figure 9: The trend in RMS error as a function of window size.
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Effect of DSMtexture: The final parameter examined is the texture setting DSMtexture. This parameter can be used
to control the quality of the point cloud while trading off the density of the point cloud. In Fig. 11a, the window size
used is the default radius DSMradius = 3 which translates to a window size of 7. We notice that the RMS error of the
carpet and the random textures do not change much with the texture parameter. However, the wood and brick textures
show an improvement in RMS error as the texture parameter is increased. When the window size is decreased to a
side length of 5 pixels, even the random texture is shown to be affected by the texture parameter in Fig. 11b. Rendered
views of the four textures used in the experiment are shown in Fig. 10. The brick texture performs the worst because
it consists of fairly uniform texture on the face of each brick. The wood texture performs slightly better although it
suffers because it does contain weakly repeating patterns. The carpet texture performs even better than the random
texture. This could be attributed to the fact that the carpet texture has variation in color while the random pattern is
mapped from a grey-scale image. The results shown in Fig. 11 reinforce the importance of sufficient texture on the
surface being modeled.

(a) (b)

(c) (d)

Figure 10: The four different textures used in experiments (a) Random, (b) Carpet, (c) Wood and (d) Brick

Conclusions from simulated scene experiments: Using the results from this set of experiments, we can conclude
that the best accuracy can be achieved for planar surface in the scene when a base-to-height ratio between 0.5 to
1.0 is used together with a camera angle of around 30◦. Moreover, a high resolution image is always better in the
case of achieving higher accuracy. If the surface has a weak texture then a larger window size with a large texture
parameter must be used. When a strong texture is present on the surface, a smaller window size can be used to save
on computational time. In Table 3, summary statistics are shown for the planar surface with ideal parameter choices.
This table shows that an accuracy of 1 part in 44,000 can be achieved for a planar scene with perfectly known camera
parameters using RMS error as the accuracy benchmark. The mean absolute error (MAE) is given by

Mean Absolute Error =
∑

N
i=1 |zi− ztrue|

N
, (3)

where N is the total number of points in the point cloud, zi refers to the depth estimate of a scene point and ztrue
refers to the true depth of the scene point. A significantly higher accuracy measure is achieved using the MAE. The
maximum error shows that the worst case accuracy measure is 1 part in 1300. It is defined by

Maximum Error = max
i
|zi− ztrue|, (4)

and quantifies the largest deviation of the reconstructed surface from the ideal planar surface.
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(a)

(b)

Figure 11: The trends in RMS error as a function of the texture parameter for different texture types in (a) with a
window size of 7 pixels and in (b) with a window size of 5 pixels

Statistic Value 1 part in N Accuracy
RMS Error 0.000385 1 part in 44,100

Mean Absolute Error 0.000030 1 part in 575,300
Max Error 0.012651 1 part in 1300

Standard Deviation 0.000384 N/A

Table 3: Summary statistics using ideal parameters

3.2 Simulations with artificial scenes and unknown camera pose

In this section, the constraints on the project are relaxed by assuming that the camera positions and orientations are
unknown. Two methods are used to solve for the unknown camera pose within PhotoModeler. The experiments
carried out in this section reflect the methodology depicted by the right-hand branch of the flowchart in Fig. 1. The
first method requires user intervention before capturing images of the surface to be modeled. A few high-contrast
coded targets are placed around the surface. These targets can then be automatically detected in the scene photographs
and their centers can be marked with sub-pixel accuracy. The unique pattern of the coded target also allows them
to be accurately matched. Rendered versions of the scene with coded targets are shown in Fig. 12a and the detected
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centers are marked in red. The second method is fully automatic and requires minimal user intervention. It uses
feature detection to find interest points in the image. These interest points are then robustly matched between images.
In Fig. 12b, detected interest points are shown on the randomly textured plane. In either case, PhotoModeler uses the
matched points to solve for the positions and orientations of the camera. It is important to point out that the internal
parameters of the camera are still assumed to be perfectly known.

(a) (b)

Figure 12: The coded targets with their centers marked with sub-pixel accuracy in (a) and the interest points detected
on the surface using a feature detector in (b)

In Fig. 13, the RMS error of the Z-depth for the scene in Fig. 7a with the plane at Z =−2 is shown as the number of
cameras in the scene is increased. An increasing number of cameras is used with the expectation that the redundancy
introduced by a larger number of correspondences between points on each image would lead to a stronger orientation
solution. The multiple cameras are placed in front of the plane in a configuration that tries to match the ideal conditions
described in Sec.3.1 as closely as possible. We notice that the RMS error of the RAD targets decreases slightly as the
number of cameras is increased but with a very gentle slope. The SM procedure (described in Sec. 2) shows a more
dramatic decrease in the RMS error. Both methods produce diminishing returns at 6 cameras. We expect the accuracy
to get better even beyond 6 cameras but with a much lower rate. This can be attributed to the fact that the scene being
considered is a relatively simple scene. A more complex scene, will generally achieve higher accuracy with a larger
number of images.

Table 4 lists the accuracy measure for both cases using RAD targets and SmartMatch. Using targets in the scene
achieves a maximum accuracy of 1 part in 18,000. The fully automatic SmartMatch procedure achieves a maximum
accuracy of close to 1 part in 10,000. Thus, there is a large decrease in achievable accuracy when the camera pose
is not known and must be jointly estimated with the reconstruction of the scene (in contrast to the 1 part in 44,000
accuracy achieved using known camera orientation in Sec. 3.1). Using targets allows precise localization and unique
matching between points in a stereo pair. They also impart a degree of invariance of viewpoint changes, lighting
changes etc. On the other hand, the feature points detected using SmartMatch are not entirely invariant to large
changes in viewing angle and non-linear pixel intensity changes. As a result, spurious matches may be included in the
orientation procedure which can lead to inaccurate estimation of camera pose.

Number of Cameras Accuracy using RAD Targets Accuracy using SmartMatch
2 1 part in 16,100 1 part in 1,400
3 1 part in 17,400 1 part in 3,300
4 1 part in 17,700 1 part in 9,700
6 1 part in 18,000 1 part in 9,000

Table 4: Summary statistics using ideal parameters
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Figure 13: The RMS error as a function of the number of cameras for projects oriented using RAD targets and by
using interest points detected by SmartMatch

3.3 Accuracy analysis using real world scenes

In this section, the collection of the ground-truth data is described in Sec. 3.3.1 and the results of DSM accuracy
studies on real world scenes are presented in Sec. 3.3.2. The ground-truth data used is in the form of a 3D point cloud
output from a state-of-the-art laser scanner. The laser scanner used is the FARO Focus3D which has a normal scanning
range from 0.6m to 20m for a surface with at least 10% reflectivity. When the ambient light is low, its range can be
extended from 0.6m to 120m for a surface with at least 90% reflectivity. The accuracy of the Focus3D is documented
to be ±2mm within a 10m range. As with most technical specifications, this accuracy is presumably obtained in ideal
laboratory settings. We use this benchmark to test the real-world accuracy of PhotoModeler Scanner under general
operating conditions. This is an important distinction as we are comparing the accuracy of PhotoModeler under general
non-ideal conditions to the accuracy of a reference laser scanner whose accuracy is determined under ideal laboratory
conditions. Our main motivation in using real world scenes is to obtain an accuracy analysis under the most general
and typical scenarios that a typical PhotoModeler user expects.

Images of the scene were taken using a Sony A200 DSLR camera at a fixed focal length of 20mm. Each image
has a resolution of 3872×2592 pixels (10 Mega-Pixel resolution). A precise camera calibration was also carried out
to estimate lens parameters with a high accuracy for use in the 3D reconstruction.

3.3.1 Establishing the ground-truth

In this section, the collection of ground-truth data and its assimilation into a comparable form with PhotoModeler
Scanner output is explained. A natural scene is captured as a 3D point cloud using a the Focus3D laser scanner. The
scene is setup with manually placed spherical targets and high-contrast 2-D targets. The centers of the spherical targets
can be detected using the software bundled with the Focus3D. Furthermore, the same targets can also be detected with
sub-pixel accuracy in PhotoModeler Scanner. The use of such targets plays two important roles: 1) they can be used
to solve for the camera pose and 2) they can be used to define an coordinate alignment transform between point clouds
measured in PhotoModeler’s coordinate system and the laser scanner coordinate system. Such a transform establishes
a common coordinate system between the two point clouds and is an essential step in comparing the relative accuracy
of PhotoModeler Scanner output. It would be important to point out that the localization of the targets to a high
accuracy is an important limiting factor in this accuracy study. There are two sources of error: the first comes from
the laser scanner software and the second comes from the sub-pixel marking in PhotoModeler. We will not comment
further on these errors as they are assumed to be much lower in scale than errors introduced by the 3D reconstruction.
The high-contrast coded 2-D targets (as shown in Fig. 15) are also used by PhotoModeler for automated marking and
matching. The centers of these targets can also be localized with a high accuracy and are used to solve for the camera
pose.

3.3.2 Comparison of PhotoModeler Scanner with LIDAR

In this section, we describe the workflow used in determining the relative accuracy of point clouds generated from
PhotoModeler Scanner . This workflow is also depicted graphically in Fig. 14. A set of input images with accurately
calibrated intrinsic parameters forms the input to PhotoModeler Scanner. The camera pose corresponding to each input
image is solved using either targets or automatically detected feature points. A dense surface model is then created
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from each pair of appropriately selected photos. Next, the pair-wise clouds are merged into a single cloud. This results
in a composite representation of the scene covered by the photos. The laser scanner captures the scene in a coordinate
system that is different from the coordinate system of a multi-view camera setup. To align their respective coordinate
systems, a suitable transformation must be estimated. This requires matching a minimum of three 3-D points between
the laser scanner point cloud and the PhotoModeler Scanner point cloud.

For the coordinate alignment procedure, we used spheres targets in the scene. Laser scanners can accurately detect
the centers of sphere targets. More importantly, PhotoModeler Scanner also provides the ability to mark spherical
targets which can be used to set up a correspondence between the laser scanner point cloud and the stereo point
cloud. Once the coordinate system transformation has been estimated, each point in the laser scanner point cloud is
transformed using the coordinate transformation to obtain comparable point clouds.
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Figure 14: A graphical depiction of the workflow used to compare a point cloud from PhotoModeler Scanner and a
point cloud from a laser scanner

A point cloud comparison tool CloudCompare [2] is used to determine the relative error between PhotoModeler
Scanner output and the laser scanner output. The point clouds are compared in two different ways. In either method,
the maximum bounding cuboid for both point clouds is computed and the 3-D volume V represented by this bounding
cuboid is discretized into voxels v. This is done using an efficient octree structure which allows fast searching of
massive point clouds.

In the first comparison method, every point X = (x,y,z) in the PhotoModeler Scanner cloud Q is compared to its
nearest neighbor NN(X) in the reference laser scanner cloud T . Thus NN(X) = argminX ′j∈v,T |X −X ′j|. Each point in
the PhotoModeler Scanner cloud is assigned a distance metric (regarded as an error) from the reference laser scanner
cloud. The resulting scalar field H(x,y,z) is then used to estimate various statistical parameters like the mean and
standard deviation of the error.

In the second method, the nearest neighbor approach is abandoned in favor of a locally fit surface between the
template points in the voxel that X belongs to. This provides a continuous function to compare the query PhotoModeler
Scanner cloud against. We use two different local best fit surfaces (LBFS), namely, a least-square plane and a Delaunay
triangulation. Similar to the first method, each point in the PhotoModeler Scanner cloud is assigned an error or
deviation from the locally best-fit surface in the reference scanner cloud. The error at each point is

H(x,y,z) = ‖X−NN(X)‖
1
2 , for the first comparison method, and (5)

H(x,y,z) = ‖X−LBFS(X)‖
1
2 , for the second comparison method, (6)

where LBFS(X) represents the local surface fit in the voxel v which X belongs to and ‖·‖ refers to the L2 norm. In this
voxel v, the points X ′j ∈ T are used in fitting the local surface, which can either be a plane or a Delaunay triangulation.
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The notation Q for the PhotoModeler Scanner cloud refers to it being a query point cloud. The scanner point cloud T
is the template cloud.

The scene chosen for this accuracy surface is a brick wall which is a relatively flat surface. Some views of the
wall used are shown in Fig. 15. The scene is set up with two different kinds of targets. To ensure a high accuracy
in the camera orientation, coded targets are placed in the scene which can be automatically marked and matched in
PhotoModeler to obtain the extrinsic parameters of the camera views. More importantly, spherical targets are also
placed in the scene so that PhotoModeler can align the coordinate axes of the laser scanner and the multi-view stereo
system. As an added advantage, the sub-pixel accuracy of the sphere target marking in PhotoModeler can be used to
refine the original orientation (that was done using coded targets).

(a) (b)

Figure 15: Two different views of the wall scene

The orientation of the cameras results in the reconstructed scene depicted in Fig. 16b. After this stage, a number of
suitable pairs are chosen for dense matching. Each pair of photos results in an output point cloud. These pair-wise point
clouds are then merged into a single point cloud. Next, the laser scanner point cloud is imported into PhotoModeler
Scanner together with the marked locations of the spheres (as output by the laser scanner software). The point cloud
generated by PhotoModeler Scanner is then aligned with the laser scanner point cloud using a Helmert transformation
[3]. The Helmert transform solves for rotation, translation and scaling parameters by introducing minimal distortions.

Subsequently, the clouds are imported into the comparison tool CloudCompare [2]. As an added precaution,
the laser scan cloud and PhotoModeler Scanner cloud are mutually registered using an iterative closest point (ICP)
procedure [4]. This ensures that the coordinate system alignment is as tight as possible. Every point from the query
point cloud (the PhotoModeler Scanner cloud) is then compared to the template point cloud and a measure of the
difference between them is found. This difference is shown as a color map in Fig. 16a. As observed, most of the
points generated by PhotoModeler Scanner are highly accurate in relation to the laser scanner. A histogram of the
differences is shown in Fig. 16c.

Comparison Method Mean Error Accuracy Measure Accuracy (w.r.t 3m range)
Point to Point 0.001737 1 part in 3,200 ±1.737mm
Point to Plane 0.0010405 1 part in 5,300 ±1.04mm

Point to Delaunay Triangulation 0.000957 1 part in 5,800 ±0.9mm

Table 5: Summary statistics of PhotoModeler Scanner Cloud v/s Laser Scan Cloud

In Table 5, the results of running different comparison methods are shown. We observe that a simple nearest
neighbor point-to-point comparison results in a mean error of 1.737mm, that of using a point-to-best fit plane method
results in a mean error of 1.04mm and using a point-to-Delaunay triangulation results in a mean error of 0.9mm. The
camera views are at an average of 3.6m away from the surface being modeled. As mentioned previously, the FARO
Focus3D has an accuracy of ±2mm within a 10m range. The accuracy of PhotoModeler Scanner is well within this
limit at the operating range of this experiment even under non-ideal real world conditions.
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(a)

(b) (c)

Figure 16: (a) The cloud to cloud difference between the PhotoModeler Scanner cloud and the laser scanner cloud
shown as a color map. The smallest differences appear as dark blue on the scale. (b) The camera orientation and dense
surface modeled in PhotoModeler Scanner. (c) The histogram of errors (point to point) between the PhotoModeler
Scanner cloud and the laser scanner cloud (in cm).

4 Conclusion
In this section, the results of the simulations and analysis carried out are used to provide guidelines for ensuring a high
level of accuracy in photogrammetric solutions using PhotoModeler Scanner. The accuracy of a photogrammetric
project depends on the setup of the scene and the camera to surface geometry. For best results, a B/H ratio between
0.5 and 1.0 should be used. While this may seem too large to provide sufficient overlap, we can overcome this by
also introducing a moderate camera angle between each pair of camera viewpoints. In addition to providing overlap,
the moderate angle (between the cameras and subtended at the surface) also provides a more accurate solution. It is
also recommended to work with the highest resolution of images available for best results. A larger window size also
leads to more accuracy when the surface is uniquely textured. However, the computational trade-off is not worth the
incremental gain in accuracy beyond a certain window size.

With regards to the project setup, it was also established that some effort in placing targets in the scene can reap
rich rewards in terms of gain in accuracy. Moreover, as the number of cameras (image viewpoints) is increased, the
added redundancy also allows for a more accurate orientation and in turn, a more accurate surface. Ensuring that the
surface being modeled has a pseudo-random non-repeating texture also contributes to the eventual accuracy of the
solution.

Finally, it was shown that the 3-D position accuracy of dense points from PhotoModeler Scanner is well within the
accuracy range of a point cloud generated by an industry-accepted laser scanner.
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